QUANTUM ISOMETRY GROUPS OF SYMMETRIC GROUPS

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Isometry groups of combinatorial codes

Two isometry groups of combinatorial codes are described: the group of automorphisms and the group of monomial automorphisms, which is the group of those automorphisms that extend to monomial maps. Unlike the case of classical linear codes, where these groups are the same, it is shown that for combinatorial codes the groups can be arbitrary different. Particularly, there exist codes with the fu...

متن کامل

Isometry Groups of Proper Cat

Let X be a proper CAT(0)-space and let G be a closed subgroup of the isometry group Iso(X) of X. We show that if G is non-elementary and contains a rank-one element then its second bounded cohomology group with coefficients in the regular representation is non-trivial. As a consequence, up to passing to an open subgroup of finite index, either G is a compact extension of a totally disconnected ...

متن کامل

Some Remarks on the Action of Quantum Isometry Groups

We give a new sufficient condition on a spectral triple to ensure that the quantum group of orientation and volume preserving isometries defined in [5] has a C∗-action on the underlying C∗ algebra.

متن کامل

Isometry Groups of Additive Codes

When C ⊆ F is a linear code over a finite field F, every linear Hamming isometry of C to itself is the restriction of a linear Hamming isometry of F to itself, i.e., a monomial transformation. This is no longer the case for additive codes over non-prime fields. Every monomial transformation mapping C to itself is an additive Hamming isometry, but there exist additive Hamming isometries that are...

متن کامل

Quasi-isometry rigidity of groups

2 Rigidity of non-uniform rank one lattices 6 2.1 Theorems of Richard Schwartz . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.2 Finite volume real hyperbolic manifolds . . . . . . . . . . . . . . . . . . . . . . . 8 2.3 Proof of Theorem 2.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.4 Proof of Theorem 2.1 . . . . . . . . . . . . . . . . . . . . . . . . ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Mathematics

سال: 2012

ISSN: 0129-167X,1793-6519

DOI: 10.1142/s0129167x12500747